ВРЕМЯ: ЧАСЫ - определение. Что такое ВРЕМЯ: ЧАСЫ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ВРЕМЯ: ЧАСЫ - определение

ПЕ­РИО­ДИ­ЧЕ­СКИ ПО­ВТО­РЯЮ­ЩЕЕ­СЯ ИЗ­МЕ­НЕ­НИЕ ИН­ТЕН­СИВ­НО­СТИ И ХА­РАК­ТЕ­РА БИО­ЛО­ГИЧЕСКОГО ПРО­ЦЕС­СА И ЯВ­ЛЕ­НИЯ
Биоритмы; Биологические ритмы; Биологический ритм; Биологические часы; Биологическое время; Биочасы
Найдено результатов: 429
ВРЕМЯ: ЧАСЫ      
К статье ВРЕМЯ
Чтобы следить за течением времени, необходим простой способ его определения. В древности для этого использовались водяные или песочные часы. Точное определение времени стало возможным после того, как Галилей в 1581 установил, что период колебаний маятника почти не зависит от их амплитуды. Однако практическое использование этого принципа в маятниковых часах началось лишь спустя сто лет. Самые совершенные маятниковые часы сейчас имеют точность хода ок. 0,001-0,002 с в сутки. Начиная с 1950-х годов, маятниковые часы перестали использоваться для точных измерений времени и уступили место кварцевым и атомным часам. См. также ЧАСЫ
.
Кварцевые часы. Кварц обладает т.н. "пьезоэлектрическими" свойствами: при деформации кристалла возникает электрический заряд, и наоборот под действием электрического поля происходит деформация кристалла. Контроль, осуществляемый с помощью кристалла кварца, позволяет получить почти постоянную частоту электромагнитных колебаний в электрическом контуре. Пьезокварцевый генератор обычно создает колебания с частотой 100 000 Гц и выше. Специальное электронное устройство, известное под названием "делитель частоты", позволяет снизить частоту до 1000 Гц. Сигнал, полученный на выходе, усиливается и приводит в действие синхронный электромотор часов. Фактически, работа электромотора синхронизирована с колебаниями пьезокристалла. С помощью системы зубчатых передач мотор может быть соединен со стрелками, показывающими часы, минуты и секунды. По существу, кварцевые часы представляют собой сочетание пьезокварцевого генератора, делителя частоты и синхронного электромотора. Точность хода лучших кварцевых часов достигает нескольких миллионных долей секунды в сутки.
Атомные часы. Для отсчета времени могут быть использованы также процессы поглощения (или излучения) электромагнитных волн атомами или молекулами некоторых веществ. Для этого применяется сочетание атомного генератора колебаний, делителя частоты и синхронного мотора. Согласно квантовой теории, атом может находиться в различных состояниях, каждое из которых соответствует определенному энергетическому уровню Е, представляющему дискретную величину. При переходе с более высокого энергетического уровня на более низкий возникает электромагнитное излучение, и наоборот, при переходе на более высокий уровень излучение поглощается. Частота излучения, т.е. число колебаний в секунду, определяется формулой:
f = (E2 - E1)/h,
где E2 - начальная энергия, E1 - конечная энергия и h - постоянная Планка.
Многие квантовые переходы дают очень высокую частоту, примерно 5?1014 Гц, и возникающее излучение находится в диапазоне видимого света. Для создания атомного (квантового) генератора необходимо было найти такой атомный (или молекулярный) переход, частота которого могла бы быть воспроизведена с помощью электронной техники. Микроволновые устройства, подобные используемым в радиолокаторе, способны генерировать частоты порядка 1010 (10 млрд.) Гц.
Первые точные атомные часы, в которых использовался цезий, были разработаны Л.Эссеном и Дж.В.Л.Парри в Национальной физической лаборатории в Теддингтоне (Великобритания) в июне 1955. Атом цезия может существовать в двух состояниях, причем в каждом из них он притягивается или одним, или другим полюсом магнита. Атомы, выходящие из нагревательной установки, проходят по трубке, расположенной между полюсами магнита "А". Атомы, находящиеся в состоянии, условно обозначаемом 1, отклоняются магнитом и ударяются о стенки трубки, тогда как атомы, находящиеся в состоянии 2, отклоняются в другую сторону таким образом, что проходят вдоль трубки через электромагнитное поле, частота колебаний которого соответствует радиочастоте, и затем направляются ко второму магниту "В". Если радиочастота подобрана правильно, то атомы, переходя в состояние 1, отклоняются магнитом "В" и улавливаются детектором. В противном случае атомы сохраняют состояние 2 и отклоняются в сторону от детектора. Частота электромагнитного поля изменяется до тех пор, пока счетчик, присоединенный к детектору, не покажет, что генерируется нужная частота. Резонансная частота, генерируемая атомом цезия (133Cs), составляет 9 192 631 770 . 20 колебаний в секунду (эфемеридного времени). Эта величина называется цезиевым эталоном.
Преимущество атомного генератора перед кварцевым пьезоэлектрическим заключается в том, что его частота не меняется со временем. Однако он не может непрерывно функционировать столь же долго, как кварцевые часы. Поэтому принято комбинировать в одних часах пьезоэлектрический кварцевый генератор с атомным; частота кварцевого генератора время от времени проверяется по атомному генератору.
Для создания генератора используется также изменение состояния молекул аммиака NH3. В устройстве, называемом "мазер" (микроволновом квантовом генераторе), внутри полого резонатора генерируются колебания в радиодиапазоне с почти постоянной частотой. Молекулы аммиака могут находиться в одном из двух энергетических состояний, различно реагирующих на электрический заряд определенного знака. Пучок молекул проходит в поле электрически заряженной пластины; при этом те из них, которые находятся на более высоком энергетическом уровне, под воздействием поля направляются в небольшое входное отверстие, ведущее в полый резонатор, а молекулы, находящиеся на более низком уровне, отклоняются в сторону. Часть молекул, попавших в резонатор, переходит на более низкий энергетический уровень, испуская при этом излучение, на частоту которого оказывает воздействие конструкция резонатора. По результатам экспериментов в Невшательской обсерватории в Швейцарии, полученная частота составила 22 789 421 730 Гц (в качестве эталона при этом использовалась резонансная частота цезия). Проводившееся в международных масштабах с помощью радио сопоставление частот колебаний, измеренных для пучка атомов цезия показало, что величина расхождений частот, получаемых в установках различной конструкции, составляет примерно две миллиардных. Квантовый генератор, в котором используется цезий или рубидий, известен под названием газонаполненного фотоэлемента. В качестве квантового генератора частот (мазера) применяется также водород. Изобретение (квантовых) атомных часов в значительной степени способствовало исследованиям изменений скорости вращения Земли и разработке общей теории относительности.
Секунда. Использование атомной секунды в качестве эталонной единицы времени было принято 12-й Международной конференцией по мерам и весам в Париже в 1964. Она определяется на основе цезиевого эталона. С помощью электронных устройств осуществляется подсчет колебаний цезиевого генератора, и время, за которое происходит 9 192 631 770 колебаний, принимается за эталон секунды.
Гравитационное (или эфемеридное) время и атомное время. Эфемеридное время устанавливается по данным астрономических наблюдений и подчиняется законам гравитационного взаимодействия небесных тел. Определение времени с помощью квантовых стандартов частоты основано на электрических и ядерных взаимодействиях внутри атома. Вполне возможно несовпадение масштабов атомного и гравитационного времени. В таком случае частота колебаний, генерируемых атомом цезия, будет изменяться по отношению к секунде эфемеридного времени в течение года, и это изменение нельзя отнести за счет ошибки наблюдения.
Радиоактивный распад. Хорошо известно, что атомы некоторых, т.н. радиоактивных, элементов самопроизвольно распадаются. В качестве показателя скорости распада используется "период полураспада" - промежуток времени, за который число радиоактивных атомов данного вещества уменьшается вдвое. Радиоактивный распад также может служить мерой времени - для этого достаточно подсчитать, какая часть от общего числа атомов подверглась распаду. По содержанию радиоактивных изотопов урана оценивается возраст горных пород в пределах нескольких миллиардов лет. Большое значение имеет радиоактивный изотоп углерода 14С, образующийся под воздействием космического излучения. По содержанию этого изотопа, имеющего период полураспада 5568 лет, можно датировать образцы возрастом несколько более 10 тыс. лет. В частности, его используют для определения возраста объектов, связанных с деятельностью человека, как в историческое, так и в доисторическое время.
Вращение Земли. Как предполагали астрономы, период вращения Земли вокруг своей оси изменяется во времени. Поэтому оказалось, что течение времени, отсчет которого ведется на основе вращения Земли, иногда бывает ускоренным, а иногда - замедленным по сравнению с тем, которое определяется по орбитальному движению Земли, Луны и других планет. За последние 200 лет ошибка в отсчете времени на основе суточного вращения Земли по сравнению с "идеальными часами" достигала 30 с.
За сутки отклонение составляет несколько тысячных долей секунды, однако за год накапливается ошибка в 1-2 с. Различают три типа изменения скорости вращения Земли: вековые, являющиеся следствием приливов под воздействием лунного притяжения и приводящие к увеличению продолжительности суток примерно на 0,001 с в столетие; малые скачкообразные изменения продолжительности суток, причины которых точно не установлены, удлиняющие или укорачивающие сутки на несколько тысячных долей секунды, причем такая аномальная продолжительность может сохраняться на протяжении 5-10 лет; наконец, отмечаются периодические изменения, главным образом с периодом в один год.
Электронные часы         
  • Электроника-5]]», СССР, конец 1980-х годов.
ЧАСЫ, В КОТОРЫХ ДЛЯ ОТСЧЁТА ВРЕМЕНИ ИСПОЛЬЗУЮТСЯ ПЕРИОДИЧЕСКИЕ КОЛЕБАНИЯ ЭЛЕКТРОННОГО ГЕНЕРАТОРА
Часы электронные

Часы, в которых источником периодических колебаний обычно служит Кварцевый генератор, а отсчёт времени производится по цифровому индикаторному устройству (на жидких кристаллах, светодиодах и т. д.). Преобразование периодических колебаний в дискретные сигналы, управляющие цифровым индикатором, осуществляется электронным устройством, выполненным на интегральных микросхемах (например, в наручных Э. ч.) или полупроводниковых приборах (например, в настольных Э. ч.).

Электронные часы         
  • Электроника-5]]», СССР, конец 1980-х годов.
ЧАСЫ, В КОТОРЫХ ДЛЯ ОТСЧЁТА ВРЕМЕНИ ИСПОЛЬЗУЮТСЯ ПЕРИОДИЧЕСКИЕ КОЛЕБАНИЯ ЭЛЕКТРОННОГО ГЕНЕРАТОРА
Часы электронные
Электро́нные часы́ — часы, в которых для отсчёта времени используются периодические колебания электронного генератора, преобразованные в дискретные сигналы, повторяющиеся через 1 с, 1 мин, 1 ч и т. д.
Время (лингвистика)         
ГРАММАТИЧЕСКАЯ КАТЕГОРИЯ ДЕЙСТВИЯ
Время (грамматика); Время (грамматическая категория); Время глагола; Глагольное время; Время (глагольное); Время (языкознание)
Вре́мя — грамматическая категория глагола, выражающая отношение времени описываемой в речи ситуации к моменту произнесения высказывания (то есть к моменту речи или отрезку времени, который в языке обозначается словом «сейчас»), который принимается за точку отсчета (абсолютное время), или отношение времени к другой относительной временной точке отсчета (относительное время).
ЭЛЕКТРОННЫЕ ЧАСЫ         
  • Электроника-5]]», СССР, конец 1980-х годов.
ЧАСЫ, В КОТОРЫХ ДЛЯ ОТСЧЁТА ВРЕМЕНИ ИСПОЛЬЗУЮТСЯ ПЕРИОДИЧЕСКИЕ КОЛЕБАНИЯ ЭЛЕКТРОННОГО ГЕНЕРАТОРА
Часы электронные
часы, в которых для отсчета времени используются периодические колебания электронного генератора, преобразованные в дискретные сигналы, повторяющиеся через 1 с, 1 мин, 1 ч и т. д.; сигналы выводятся на цифровое табло, показывающее текущее время, а в некоторых моделях также число, месяц, день недели. Основа электронных часов - микросхема; питание - от сети или элементов, в т. ч. миниатюрных (в наручных электронных часах). Существуют электронные часы, конструктивно объединенные (на базе общей микросхемы) с микрокалькулятором, а также электронные часы-будильник.
Часы на Спасской башне         
  • Часы 1404 года.
  • Нового года]] (2012)
  • Часы Спасской башни в XVII веке
  • Куранты Московского кремля в 2013 году
  • гимна России]] в 18:00 (ритм ускорен)
  • Исполнение курантами «[[Славься]]» в 15:00 (ритм ускорен)
  • Вид на Спасские ворота после боёв в октябре 1917 г.
  • Спасская башня с часами XVII века, вид целиком. Рисунок 1663 г.
  • Спасская башня с 24-часовыми часами в 1678 году.
Часы Спасской башни; Кремлёвские часы; Куранты Спасской башни
Часы на Спасской башне — часы-куранты на Спасской башне Московского Кремля, одни из древнейших в мире. Первые часы установили в XV веке, в дальнейшем они неоднократно реставрировались и заменялись. Ежегодно на фоне Спасской башни президент России выступает с поздравительной речью, а звон колоколов объявляет о наступлении нового года.
Поясное время         
  • +2 ч ± 30 мин}}
  • Часовые пояса США по состоянию на 1913 год
ЕДИНОЕ ОФИЦИАЛЬНОЕ ВРЕМЯ ДЛЯ РЯДА РЕГИОНОВ
Местное время; Стандартное время

система счёта времени, основанная на разделении поверхности Земли на 24 часовых пояса: во всех пунктах в пределах одного пояса в каждый момент П. в. одинаково, в соседних поясах оно отличается ровно на один час. В системе поясного времени 24 меридиана, отстоящих по долготе на 15° друг от друга, приняты за средние меридианы часовых поясов. Границы поясов на морях и океанах, а также в малонаселённых местах проводят по меридианам, отстоящим на 7,5° к В. и З. от среднего. В остальных районах Земли границы для большего удобства проведены по близким к этим меридианам государственным и административным границам, железным дорогам, рекам, горным хребтам и т.п. (см. карту часовых поясов). По международному соглашению за начальный был принят меридиан с долготой 0° (Гринвичский). Соответствующий часовой пояс считается нулевым; время этого пояса называется всемирным. Остальным поясам в направлении от нулевого на восток присвоены номера от 1 до 23. Разность между П. в. в каком-либо часовом поясе и всемирным временем равна номеру пояса.

Время некоторых часовых поясов получило особые названия. Так, например, время нулевого пояса называют западноевропейским, время 1-го пояса - среднеевропейским, время 2-го пояса в зарубежных странах называют восточноевропейским временем. По территории СССР проходят часовые пояса от 2-го до 12-го включительно. Для наиболее рационального использования естественного света и экономии электроэнергии во многих странах в летнее время часы переводят на один час или более вперёд (т. н. летнее время). В СССР Декретное время введено в 1930; стрелки часов были передвинуты на час вперёд. В результате все пункты в пределах данного пояса стали пользоваться временем соседнего пояса, расположенного к В. от него. Декретное время 2-го часового пояса, в котором расположена Москва, называется московским временем.

В ряде государств, несмотря на удобство поясного времени, не пользуются временем соответствующего часового пояса, а употребляют на всей территории или местное время столицы, или время, близкое к столичному. В астрономическом ежегоднике "Nautical almanac" ("Морской альманах") (Великобритания) за 1941 и последующие годы приведены описания границ часовых поясов и принятого счёта времени для тех мест, где П. в. не употребляется, а также все происшедшие впоследствии изменения.

До введения П. в. в большинстве стран было распространено гражданское время, различное во всяких двух пунктах, долготы которых неодинаковы. Связанные с такой системой счёта неудобства стали особенно остро ощущаться с развитием ж.-д. сообщений и средств телеграфной связи. В 19 в. в ряде стран стали вводить единое для данной страны время, чаще всего гражданское время столицы. Однако эта мера была непригодна для государств с большой протяжённостью территории по долготе, т.к. принятый счёт времени на далёких окраинах значительно отличался бы от гражданского. В некоторых странах единое время вводилось только для употребления на железных дорогах и телеграфе. В России для этой цели служило гражданское время Пулковской обсерватории, называвшееся петербургским временем. П. в. было предложено канадским инженером С. Флемингом в 1878. Впервые оно было введено в США в 1883. В 1884 на конференции 26 государств в Вашингтоне было принято международное соглашение о П. в., однако переход на эту систему счёта времени затянулся на многие годы. На территории СССР П. в. введено после Великой Октябрьской социалистической революции, с 1 июля 1919.

Лит.: Куликов К. А., Курс сферической астрономии, 2 изд., М., 1969.

Поясное время         
  • +2 ч ± 30 мин}}
  • Часовые пояса США по состоянию на 1913 год
ЕДИНОЕ ОФИЦИАЛЬНОЕ ВРЕМЯ ДЛЯ РЯДА РЕГИОНОВ
Местное время; Стандартное время
Поясно́е вре́мя — время часового пояса. Из определения часового пояса следует, что поясное время имеет два значения — географическое и административное:
ПОЯСНОЕ ВРЕМЯ         
  • +2 ч ± 30 мин}}
  • Часовые пояса США по состоянию на 1913 год
ЕДИНОЕ ОФИЦИАЛЬНОЕ ВРЕМЯ ДЛЯ РЯДА РЕГИОНОВ
Местное время; Стандартное время
среднее солнечное время, определяемое для 24 основных географических меридианов, отстоящих на 15 ° по долготе. Поверхность Земли разделена на 24 часовых пояса (с номерами от 0 до 23), в пределах каждого из которых поясное время совпадает со временем проходящего через них основного меридиана. Поясное время в смежных поясах различается на 1 ч. Счет поясов ведется с запада на восток. Основным меридианом нулевого пояса является Гринвичский меридиан. Разность (в часах) между поясным временем какого-либо пояса и всемирным временем равна номеру пояса. Поясное время некоторых поясов имеет собственное название; напр., поясное время нулевого пояса называют западноевропейским (всемирным), первого пояса - среднеевропейским, второго пояса - восточноевропейским.
МЕСТНОЕ ВРЕМЯ         
  • +2 ч ± 30 мин}}
  • Часовые пояса США по состоянию на 1913 год
ЕДИНОЕ ОФИЦИАЛЬНОЕ ВРЕМЯ ДЛЯ РЯДА РЕГИОНОВ
Местное время; Стандартное время
время, определяемое для данного места на Земле; зависит от географической долготы места и одинаково для всех точек на одном меридиане. В быту местное время часто неправильно называют поясное время.

Википедия

Биоритм

Биологи́ческие ри́тмы (биоритмы) (от греческого βίος — bios, «жизнь» и ῥυθμός — rhythmos, «любое повторяющееся движение, ритм») — периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях её организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе.

Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам, например, суточные, приливные, годичные. Наука, изучающая биологические ритмы, возникшие в живых существах для приспособления их жизнедеятельности к периодическим изменениям в окружающей среде, получила название хронобиология.

Вместе с тем в конце XX века приобрела популярность псевдонаучная теория «трёх ритмов», не зависящих как от внешних факторов, так и от возрастных изменений самого организма. Теория была предложена рядом авторов в конце XIX века в виде гипотезы и позже была экспериментально опровергнута.

Что такое ВРЕМЯ: ЧАСЫ - определение